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Abstract
The aim of this work is to develop the method of calculating atomic interactions
in metals and semiconductors on the basis of first-principles electronic structure
calculation. A new method to calculate the atomic interactions in the framework
of KKR-CPA is proposed. In this approach two specific atoms embedded
in a CPA medium are considered and the effects of both electron–electron
interactions and multiple scattering, which are neglected in the generalized
perturbation method (GPM), are fully taken into account. The calculated
atomic interactions show that these effects are important for alloys containing
transition-metal alloys such as FeAl. On the other hand, in the case of AuCu,
where the d states lie considerably below the Fermi level, the effects are less
important.

1. Introduction

Chemical ordering, including short-range ordering and long-range ordering, is observed in
many substitutional alloys. The ordering emerges in disordered states as a result of atomic
interactions acting between atoms in the disordered state. Strong or weak interactions, as
well as the sign of these interactions, determine the chemical ordering. They also determine
various physical properties such as cohesive, structural and magnetic properties. The atomic
interactions in alloys have long been studied theoretically. Some of them are based on
perturbation theory. Others rely more or less on interpolation or extrapolation schemes. None
of those, however, are powerful enough to predict the precise phase diagram of experimentally
unknown systems or the subtle self-organizing structure of doped systems, and so on. To
develop methods that enable us to accurately calculate the ordering energy of disordered alloys
and doped systems in a systematic way is thus one of the challenges for many researchers in
this field.

A starting point of the study is to expand the configuration energy into cluster interactions
of Ising-like form, where the occupation number of a particular atom at each site is used
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in place of magnetic moments. These are often called effective cluster interactions, ECIs.
Along this line, many authors have developed methods to calculate the ordering energy of
disordered systems. One of the methods is the Connolly–William method (CWM) [1]. In this
method, Connolly and William derived a cluster expansion from a series of density-functional
calculations on various ordered compounds. They gave a definition of the correlation function
ξ corresponding to each type of structure, and expressed the configuration energy as a sum of
many-body interaction potentials υn(r) weighted by the correlation functions. This method has
been widely applied for constructing the phase diagram of binary alloys [2, 3] and oxides [4].
However, the convergence of the expansion is not necessarily fast, which is a main drawback of
this method. Alternatively, one may use generalized perturbation method (GPM) type schemes.
Such schemes are less problematic concerning the convergence.

The GPM theory was first proposed by Ducastelle and Gautier [5, 6] in 1976. In their
work, the determination of a configuration energy was performed in terms of effective cluster
interactions within the framework of the embedded cluster method (ECM) that was based on the
idea of Kikuchi (the cluster variation method—CVM [7]). The basis of this method is the use
of completely disordered states, which are described in the coherent potential approximation
(CPA), as an appropriate reference medium. Later, Gonis et al [8] gave a clear definition of
effective pair interactions by evaluating the atomic interactions. In intensive studies, Turchi et al
[9] employed the GPM combined with the Korringa–Kohn–Rostoker (KKR) method and local
density approximation (LDA) of the density functional method to calculate the effective pair
interactions for substitutional alloys PdV and PdRh. The ordering and segregating tendencies
of these alloys, which were obtained by the theoretical calculation, are in reasonable agreement
with experimental results. However, in their approach, due to the perturbative nature of the
GPM, only the second-order scatterings could be taken into account to determine the effective
pair interactions. Moreover, they neglected the effects of the electron–electron interaction on
the atomic interactions, which could be important in correlated systems.

The purpose of the present study is to determine the atomic interactions more accurately
by taking account of both multiple scattering and electron–electron interaction effects. In
this approach, by embedding two impurities in a CPA medium, the atomic interaction energy
can be calculated self-consistently. We use the present method to calculate the effective pair
interactions of several binary alloys to see the applicability of the method. The results show that
the effects of electron–electron interactions and multiple scattering are significant in the case of
transition-metal alloys such as FeAl. In contrast, in AuCu, where the d states lie considerably
below the Fermi level, these effects are less important.

2. Theoretical framework

2.1. Generalized perturbation method in KKR-CPA

Based on the calculation using the first-principles KKR method, a completely disordered state
can be determined in the CPA. Starting from this completely disordered state, the configuration
energy is expanded into the concentration fluctuation δc. The second-order effective cluster
interaction in this scheme, which is obtained from the kth-order effective cluster interaction
defined in [9] by putting k = 2, is

Vi j = − 1

π
Im

∫ εF

−∞
dεTr

[
�(ε)τi j(ε)�(ε)τ j i(ε)

]
(1)

with �(ε) = t−1
A (ε) − t−1

B (ε) and

τi j(ε) =
∑
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]−1
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[
i�k( �Ri − �R j )
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Figure 1. Effective pair interactions up to fourth-neighbour shell as functions of the vanadium
concentration for PdV substitutional alloys.

Figure 2. Effective pair interactions as functions of the distance between the atoms for Pd1−cVc

and Pd1−cRhc alloys at c = 0.5.

Here, t−1
A(B) is the inverse t-matrix of the A(B) atom, t is the coherent t-matrix, and �Ri denotes

the position of the i th impurity atom. It is clear that only the second-order scattering is
taken into account in these equations. Also, the effects of the electron–electron interaction,
which could be partly included if a self-consistent procedure we will propose were used, are
completely neglected.

To illustrate the above method, we calculated the case of PdV and PdRh substitutional
alloys, which were also calculated by Turchi et al, on an underlying fcc structure. The results
are shown in figures 1 and 2. Our calculation for the effective pair interaction (second-order
term) up to the fourth-nearest neighbours of the PdV system at some different concentrations
of vanadium is essentially the same as those given by Turchi et al [9]. The tendency towards
ordering of PdV and that towards phase separation of PdRh systems, corresponding to positive
or negative effective pair interactions, shown in figure 2, are in reasonable agreements with
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experimental ones. The calculations here were performed by GPM code that was implemented
in the MACHIKANEYAMA KKR-CPA–LDA code [10].

2.2. Inclusion of multiple scattering

In order to improve the GPM theory, we propose a method which calculates the atomic
interactions of the substitutional system including the effects of multiple scattering and
electron–electron interaction. The basic idea of the approach is that the effective pair interaction
can be directly calculated by embedding two impurities in the host CPA medium. By
calculating the scattering path operator as well as the Green’s function where the two specific
atoms are embedded in the CPA medium, we compare the energy of systems for three different
cases: A–A, A–B and B–B pairs embedded in a completely disordered binary AB system. The
effective pair interaction is now obtained as the differences in energy between these cases:

Vi j = �EAA + �EBB − 2�EAB. (3)

The electronic structure of two embedded impurities, for which multiple scattering between
two impurities occurs, is solved using the scattering path operator matrix containing two blocks
corresponding to the two impurity atoms:

τ =
(

τii τi j

τ j i τ j j

)
. (4)

Thus obtained τ is used to calculate the corresponding quantity B [11] for the scattering of the
impurity pair system:

B =
(

t−1
i − t−1 − (τ−1)ii −(τ−1)i j

−(τ−1) j i t−1
j − t−1 − (τ−1) j j

)−1

. (5)

From B , the back-scattering part of the Green’s function is obtained and the charge density
is constructed from it. The change in the band energy �Eband due to embedding an impurity
pair in the system is also calculated directly from B . The effective pair interaction including
multiple scattering is now obtained from equation (3) by comparing the changes in the band
energy of the embedded case from the non-embedded case, �EAA

band, �EBB
band and �EAB

band.
In figure 3, the effective pair interactions of the PdV system for various concentrations of

vanadium, calculated from the differences in the band energy including the multiple scattering
effects described above, are compared with the GPM results calculated according to Turchi’s
approach. The values of effective pair interaction are essentially unchanged from that obtained
by Turchi’s approach. Hence, it is concluded that the effect of multiple scattering is not
significant in these cases.

2.3. Self-consistent determination of atomic interactions

To further improve the calculation, we introduce the effects of electron–electron interaction
on the atomic interaction. The change in the electron–electron interaction depends on the
specific type of atom pairs and is obtained from the total energy of the system calculated self-
consistently with two impurity pairs embedded in the CPA medium. The total energy of the
system can be expressed as

E tot = T + E stat + Exc. (6)

4



J. Phys.: Condens. Matter 19 (2007) 365232 N H Long and H Akai

Figure 3. Effective pair interactions as functions of the distance between the atoms for Pd1−cVc, at
c = 0.25 (a), c = 0.3 (b), c = 0.5 (c) and c = 0.75 (d).

The kinetic energy T of non-interacting system in the sense of the local den-
sity functional theory is calculated by subtracting the potential energy Epot =∑

σ

∑
i=A,B ci

∫ RMT

0 drr 2ρi
σ (r)vi

σ (r) from the band energy that is obtained in section 2.2. Here
i indicates the species of the component atoms and ci is the concentration of the i th species;
ρi

σ and vi
σ are respectively the charge density and the effective potential of each component

atom. The exchange–correlation energy Exc is calculated within the LDA. The electrostatic
energy E stat includes both electron–electron (Hartree energy) and electron–nucleus (external
potential) contributions. This term needs special care since usual KKR-CPA–LDA does not
take account of the effect of the charge redistribution on the long-range electrostatic interaction
that may occur by placing a specific impurity atom in the medium. We calculate E stat in the fol-
lowing way. In the usual procedure, the electrostatic energy is calculated from self-consistent
charges associated with an impurity embedded in a totally charge neutral CPA medium. The
final expression in general is summarized as

E stat = QV + E stat inside, (7)

where Q = ∑
i=A,B ci Qi is the average total charge inside the muffin-tin sphere at site i and V

is the electrostatic potential of the medium associated with each site:

V = AQ. (8)

Here, A is the Madelung coefficient, which depends on the crystal structure. E stat inside is the
electrostatic energy due to the charges inside the muffin-tin sphere, which can be calculated
locally for each site. Using the Madelung-type potential V , the electrostatic energy caused by
an impurity pair embedded in the CPA medium can be treated in the following way: suppose
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Figure 4. Effective pair interactions as functions of the distance between the atoms for Au1−cCuc,
at c = 0.25 (a), c = 0.5 (b) and c = 0.75 (c).

that impurities A (charge QA) and B (charge QB) are located at site i and j, respectively.
First we notice that the change in QA(B) is rather small even for an impurity pair formed by
nearest neighbours, typically 10−3 ∼ 10−5 in metallic systems. In such cases, the change in
the interatomic electrostatic energy to the first order in �QA(B), which is the change in QA(B)

due to the existence of the second impurity at the near neighbour, would be enough for the
calculation of the atomic interactions. Then the change in the electrostatic energy �E stat is
well approximated as

�E stat = (�QA + �QB)V + �E stat inside. (9)

After the self-consistency is attained, the total energy is compared with that of disordered state
described by the CPA medium. Then, the effective pair interaction can be directly obtained by
use of equation (3).

Figure 3 shows the effective pair interactions of binary PdV alloy obtained by the above
self-consistent procedure. It is seen that the differences in the effective pair interactions
between the self-consistent determination and the GPM are considerable for first four nearest
distances. Therefore, we can conclude that the effect of the electron–electron interactions
cannot be neglected for a reliable description of the effective pair interaction. Furthermore,
in the present scheme the pair interactions show a rapid convergence with increasing distance
between the atoms, which is known as an advantage of the GPM.
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Figure 5. Effective pair interactions as functions of the distance between the atoms for Fe1−cAlc,
at c = 0.25 (a), c = 0.5 (b) and c = 0.75 (c).

3. Effective pair interaction for AuCu and FeAl systems

In this section, the applications of our new method to AuCu and FeAl binary alloy systems
are presented. In the AuCu system, the relativistic effects, except the spin–orbit interaction,
are included in order to make the comparison with other calculations possible [12], though
the FeAl system is treated in a non-relativistic scheme. For all cases, the lattice constants of
systems at the completely disordered state are determined from the minimum of the total energy
as a function of the lattice constant.

Figure 4 shows the effective pair interactions of AuCu alloys as functions of the distance
between the atoms. Each plot corresponds to the concentration of Cu being 0.25, 0.5 and 0.75,
respectively. It might be expected that the effect of the electron–electron interaction would be
rather strong for both transition and noble metals. In the case of AuCu, however, there are no
remarkable differences in the effective pair interactions calculated by the GPM and the present
method. This may indicate that the electron–electron interaction is well screened by s and p
electrons in the cases where the d states lie rather deep below the Fermi energy.

The effective pair interactions obtained by the differences in the band energy, i.e., inclusion
of the two-atom multiple scattering, also are rather unchanged from the results of the GPM
calculation (see figure 4 for the AuCu system and figure 5 for the FeAl system). In these cases,
it is also concluded that neglecting the multiple scattering might not be a critical drawback.
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To see the effect of electron–electron interaction on the atomic interaction in the case of
transition-metal alloys, we investigate the effective pair interactions for FeAl. In this system,
in contrast to AuCu, the values of effective pair interactions change considerably, as shown in
figure 5. Figures 5(a)–(c) correspond to the cases of the concentration of Fe is 0.75, 0.5 and
0.25, respectively. In figures 5(a) and (b), for which the concentration of Fe is rather high, we
can see that the differences in the effective pair interactions between the GPM and the self-
consistent determination are remarkable. On the other hand, in the case shown in figure 5(c),
where the concentration of Fe is low and the screening due to s and p states is more effective,
the difference is relatively small. From these observations, in the case of FeAl, we conclude
that the effects of the electron interaction are considerable and cannot be neglected.

4. Conclusion

We have developed a new approach to calculate pair interactions of alloy systems. This
approach deals with two embedded atoms in the CPA medium in the framework of the
first-principles KKR-CPA method. The effects of multiple scattering and electron–electron
interaction, which are completely neglected in the GPM, are taken into account in this approach.
From the calculation for PdV and FeAl systems, it is concluded that the effect of the electron–
electron interaction is rather important in determining the effective atomic pair interaction. On
the other hand, in the case of the AuCu system, where the main d states lie below the Fermi
level, the treatment neglecting both the electrons interaction and multiple scattering seems still
to work. An investigation using the present method for doped semiconductor systems, for
which the effects of multiple scattering are known to be important, is now going on.
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